Domain decomposition for multiscale PDEs
نویسندگان
چکیده
We consider additive Schwarz domain decomposition preconditioners for piecewise linear finite element approximations of elliptic PDEs with highly variable coefficients. In contrast to standard analyses, we do not assume that the coefficients can be resolved by a coarse mesh. This situation arises often in practice, for example in the computation of flows in heterogeneous porous media, in both the deterministic and (Monte-Carlo simulated) stochastic cases. We consider preconditioners which combine local solves on general overlapping subdomains together with a global solve on a general coarse space of functions on a coarse grid. We perform a new analysis of the preconditioned matrix, which shows rather explicitly how its condition number depends on the variable coefficient in the PDE as well as on the coarse mesh and overlap parameters. The classical estimates for this preconditioner with linear coarsening guarantee good conditioning only when the coefficient varies mildly inside the coarse grid elements. By contrast, our new results show that, with a good choice of subdomains and coarse space basis functions, the preconditioner can still be robust even for large coefficient variation inside domains, when the classical method fails to be robust. In particular our estimates prove very precisely the previously made empirical observation that the use of low-energy coarse spaces can lead to robust preconditioners. We go on to consider coarse spaces constructed from multiscale finite elements and prove that preconditioners using this type of coarsening lead to robust preconditioners for a variety of binary (i.e. two-scale) media model problems. Moreover numerical experiments show that the new preconditioner has greatly improved performance over standard preconditioners even in the random coefficient case. We show also how the analysis extends in a straightforward way to multiplicative versions of the Schwarz method.
منابع مشابه
Abstract Multiscale–hybrid–mixed Methods
MULTISCALE–HYBRID–MIXED METHODS ALEXANDRE L. MADUREIRA Dedicated to Leo Franca, in memoriam. ABSTRACT. In an abstract setting, we investigate the basic ideas behind the Multiscale Hybrid Mixed (MHM) method, a Domain Decomposition scheme designed to solve multiscale partial differential equations (PDEs) in parallel. As originally proposed, the MHM method starting point is a primal hybrid formula...
متن کاملRobust FETI solvers for multiscale elliptic PDEs
Finite element tearing and interconnecting (FETI) methods are efficient parallel domain decomposition solvers for large-scale finite element equations. In this work we investigate the robustness of FETI methods in case of highly heterogeneous (multiscale) coefficients. Our main application are magnetic field computations where both large jumps and large variation in the reluctivity coefficient ...
متن کاملRobust Domain Decomposition Algorithms for Multiscale PDEs
In this paper we describe a new class of domain deomposition preconditioners suitable for solving elliptic PDEs in highly fractured or heterogeneous media, such as arise in groundwater flow or oil recovery applications. Our methods employ novel coarsening operators which are adapted to the heterogeneity of the media. In contrast to standard methods (based on piecewise polynomial coarsening), th...
متن کاملOptimization and Model Reduction of Time Dependent Pde-constrained Optimization Problems: Applications to Surface Acoustic Wave Driven Microfluidic Biochips
The optimal design of structures and systems described by partial differential equations (PDEs) often gives rise to large-scale optimization problems, in particular if the underlying system of PDEs represents a multiscale, multiphysics problem. Therefore, reduced order modeling techniques such as balanced truncation model reduction (BTMR), proper orthogonal decomposition (POD), or reduced basis...
متن کاملMultiscale mass conservative domain decomposition preconditioners for elliptic problems on irregular grids
Multiscale methods can in many cases be viewed as special types of domain decomposition preconditioners. The localisation approximations introduced within the multiscale framework are dependent upon both the heterogeneity of the reservoir and the structure of the computational grid. While previous works on multiscale control volume methods have focused on heterogeneous elliptic problems on regu...
متن کاملScalable Parallel Domain Decomposition Methods for Numerical Simulation of PDEs
This paper is concerned about scalable parallel domain decomposition methods for numerical simulation of PDEs. First, one level and two level scalable parallel domain decomposition methods which can be used to solve different equations, are introduced in detail, and then we explain Krylov subspace accelerator technique used to improve the convergence of the methods. Last, the results of some nu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Numerische Mathematik
دوره 106 شماره
صفحات -
تاریخ انتشار 2007